경우의 수 (2)
2. 대표적인 경우의 수 꼴의 부정방정식의 해 계수가 큰 항을 기준으로 생각한다. (2) 지불방법, 지불금액의 수100원권 p장, 10원권 q장, 1원권 r장이 있을 때지불 방법의 수: (p+1)(q+1)(r+1)-1 가지지불금액의 수 (1) 화폐액면이 중복되지 않을때 (p+1)(q+1)(r+1)-1 가지 (2)화폐액면이 중복될 때 작은 액면으로 통일한 후 계산 (저액권 몇장의 합이 고액권과 일치하는 경우) ex) 100원권 3장,50원권 2장, 10원권 1장으로 지불할 수 있는 금액의 수는? {(6+2)+1}(1+1)-1 = 17가지 틀리는 총 수 1,2,3,…, n의 번호가 적힌 카드를 1,2,3,…, n의 번호가 적힌 봉투에 넣을 때, 각 카드가 자기 번호의 봉투에 들어가지 않는 모든 경우의 수는 ..
더보기